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Free expansion of elastic filaments
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The dynamics of an elastic polymer filament undergoing contour length expansion is studied using computer
simulation. The expansion occurs by development of transverse buckling waves that grow through a coarsening
process. The growing buckles locally organize into a helical structure with a characteristic persistence length.
The helical domain boundaries are eliminated from the relaxing structure by unwinding through the ends of the
rod. The growth of the helical domains results in self-propulsive motion of the expanding rod, as one large
helix spanning the entire chain relaxes during the late stages of the dynamics. Stability analyses and scaling
arguments are provided to explain the simulation results.
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[. INTRODUCTION evolves as a phase ordering process.
The expansion of an elastic filament with free ends after a

Many important biological and polymeric systems quickly sudden change of solvent condition can exhibit a similar
respond to changes in their surrounding conditions by alterbuckling instability to the case of applied external stress with
ing their conformations. These conformational adjustmentéixed ends. This conclusion, however, is not obvious, due to
include volume expansion in response to changes in the coiibe fact that whereas transverse buckling is the only mecha-
ditions of the solutioripH, temperature, salinifyand volume ~ hism to relieve the compressional strain in the case of fixed
compression due to externally applied stress or intramolecignds, a rod with free ends has the option of increasing its
lar attraction. For example, anionic hydroggl] micro- length through longitudinal expansion. We will identify the
spheres respond to changes in pH and salt concentration Wnditions under which Iongitudinal relaxation dominates the
expanding to a swelling ratio of as much as 12. Microgels€xpansion process. Since free expansion through transverse
which respond to these changes much faster than slab gdpsickling represents a richer and more interesting phenom-
(0.5 seconds versus holrare being evaluated as likely can- €non, it will be the focus of our study. Nevertheless, longi-
didates for drug delivery systems because of their small siz&/dinal motion will be shown to have a significant effect on
(~10 wm) and short response time. Similar gel chemistry isthe dynamics, particularly on the expansion of the major axis
employed in the production of nanoscale cond[2s Single ~ of the rod.
nanotubes can be formed from biomembrane vesicles by We study the expansion dynamics by computer simulation
bonding a substrate to the membrane surface and drawingad by extending previous analyses of the buckling phenom-
stabilized fluid-lipid bilayer. The caliber of the nanometer €non of filaments with fixed ends. We focus on the three-
scale tube can be experimentally controlled in the range 20dimensional structure of the dynamic process of expansion.
200 nanometers. The nanotube is stabilized by photochem-i[he initial InStablllty prOduceS wavelike deformations in the
cal p0|ymerization of Cross-"nking monomers ContainedtWO transverse directions. As the wavelike buckles grow,
within the lipid bilayer, resulting in a cross-linked gel cylin- they coalesce to form helical structures in order to assume a
der of nanometer scale radius and near-millimeter lengthdrowing conformation of constant curvature along the back-
When anionic hydrogel chemistry is employed, nanotube®one. Domains of helical orientation spontaneously form due
with the capability of expanding their equilibrium lengths areto statistical deviation of the buckle wavelength from the
produced. Nanoscale devices may use the expansion of the&ost unstable value. The sizes of the helical domains grow
nanotubes for hydrodynamic propu|sion or as mechanical 1eaS the rod expands, until the rod conformation is dominated
vers, where adjustments in the solution conditions trigger th®y @ single helical orientation. The final structure is a pure
desired response. Understanding the dynamics of this expahelix (single handednegsalthough the system initially lacks
sion process is important for the design of nanoscale devicegny chiral preference. An interesting consequence of the
Toward this goal, we simulate and analyze the free expansiofowth of the helical domains is the phenomenon of self-
of an initially straight elastic rod after a sudden change in théropulsion[4] of the expanding body throughout the expan-
solvent conditions. sion process. We present methods for measuring the average

A closely related problem of buckling of an elastic fila- Persistence length of the helical domains and explain their
ment in a viscous medium under uniaxial compression wittgrowth as a dissipative process.
fixed ends has been studied by Golubogtal. [3]. It was
foun_d_ that_ the compress_io_n causes a transverse bucklir_wg in- Il. ELASTIC ROD MODEL
stability with a characteristic wavelength. Through buckling,
the compressional strain is reduced by expansion in the We consider a thin rod of initial equilibrium length, and
transverse direction at the expense of incurring bending deasniform circular cross-sectional arég, made of isotropic
formation. The buckling phenomenon occurs spontaneouslglastic material. At the order of linear elasticity, the deforma-
through a symmetry breaking, and the buckled configurationion of the rod can be decomposed into compression/
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expansion, bending, and twist. In this first study, we ignore kN
the twist deformation. In the case of a rod with free ends, Ucom =2 E , (5)
twist deformation is dissipated out of the unconstrained =
body. The resistance to twist dissipation is much smaller than
the resistance to drift motion of the entire rod; therefore, we
neglect body rotation and focus on the drift motion of the
chain. The shape of this thin rod is then described by a space
curver(s) wheresis an internal contour coordinate that runs
from 0 toL,. The linear compression/expansion strain, mea- ) _
sured with respect to the initial rest lendth, is given by~ Wheret,=(Rn.1—Ry)/|Rq. 1~ Ry is the unit tangent vec-
tor. The moduli are now given byx=I1,k=EljA, and e

o ='el/ly=EAZ/(47l,) and have units of energy. We will use
the modulix and e in the subsequent analysis.

We describe the dynamics of the thin rod by an over-
where we have defined the strain to be positive if it corre-damped Rouse dynamics in a viscous medj8inThe equa-
sponds to compression. However, we are interested in thgon of motion is
dynamic evolution of the rod after a sudden change in the
solvent condition causes a change in the equilibrium length. dR, (1) oJ
Under the charged condition, the equilibrium length of the a (9_Rn+ n(0), @
rod becomed ;>L,. The rod at the initial length., will
now experience a compressional strain with respect to thevhere £ is the friction coefficient of the solvent arfg(t)
new equilibrium length. It is therefore more convenient torepresents the random forces due to thermal noise. We will
define a strain with respect to the new equilibrium lerigth ~ be interested in deformation energig@soth bending and

compressionthat are large compared to the thermal energy;

therefore, we will ignore any randomness except that associ-
2 ated with the initial perturbation. In Sec. IV, we further dis-

cuss the conditions where thermal fluctuations significantly

where yo=L;/L, is the swelling ratio in the longitudinal contribute to the expansion dynamics and justify the neglect
direction. of the thermal fluctuations in our study.

The strain energy due to Compression iS then AnaIySiS of the equations of motion of the beads y|e|dS
two fundamental time scales = &3/ k and ren= €13/ €,
% (Lo associated with the location compression and bending relax-
Ucom=§f e(s)?ds, €)) ation, respectively. An additional time scatg associated
0 with the buckling phenomenofsee Sec. Y arises from the
expansion dynamics. In order to resolve these fundamental
where'x is the compression modulus and is related to theime scales feom» Thend» @and o), the numerical solution of
Young's modulusE of the elastic material bx=EA,. We  Eq. (7) is conducted using timesteps that are small in com-
will ignore the change in the Young’s modulus due to theparison. For the parameters that we choose, these three time
expansion of the rod. scales are on the same order of magnitude; therefore, we
The bending energy is due to curvature distortion of thearbitrarily choose to scale time by the fundamental buckling
rod from its equilibrium value, which in our case is taken totime 7.
be zero. For an unstretchable rod model, such as the Kratky-
Porod wormlike chain moddl5,6], the curvature is simply 1. EXPANSION DYNAMICS
3%rl9s®. However, in our case the length of the rod is not
conserved, and curvature is more properly defined as Our simulations focus on the dynamics of an initially
(1/y) a1 3s[ (11y)(arl3s)] wherey(s)= (dr/ds-dr/ds)*?re-  straight rod of length 19919 expanding to a final equilib-
lates the true arc length to the backbone internal coordinatéium length of 298.5, (50% expansion We use a Young's
The bending energy is then given by modulus of 18 Nm™2, representing that of polyethylenegly-
col (400 methacrylate hydrogdB]. Choosing an initial in-
terbead spacindg,=346.38 nm and radiuR=292.40 nm
Ubend=zj (————) ds, (4) results in a compression modulus=9.304<10 ¢ J and
0 bending modulug=1.657x 101 J.
_ We seed the initially straight chain with a small random
where the bending modulusis found from the geometry of perturbation in the transverse direction of an amplitude of
a gently bent cylinder to bEAS/(47T) [7]. 0.01,. (This initial condition does not reflect the tendency
To numerically solve the dynamic equation of motion, wefor a chain under thermal fluctuations to favor long wave-
discretize the rod intdN+1 “beads” with an initial bead length perturbations. We have conducted simulations with
separation ofl=Ly/N. In this discretized representation, perturbations produced by thermal equilibration of a chain
the compression and bending energies become with the initial interbead spacing, and observe qualitatively

wheree,= yo— (|Rn+1— Ry|lo) gives the internal strain, and

€
Upend=3 2, (tas1=t)?, ©®

e(s)=1—

(95

ar
e(s)=7vo— 2al’
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t/1:o
FIG. 2. Bending energWpeng (4A), compression energy .om
(V), and total potential enerdy = Uengt Ucom during the expan-
sion process. The total energy becomes indistinguishable from
Ubendfor t/7'0>5.

tions during the expansion of the chain. The drop in the
compression energy and sharp rise in the bending energy
corresponds to a time when the buckling waves begin to
grow significantly. Once the buckling waves are fully devel-
oped, both energy contributions decay due to dissipation.
Over a broad intermediate time range, the decay of both
contributions follows a power law with exponentl/2 and

FIG. 1. Snapshots of the chain conformation during the free~ 1 for the bending and compression energies, respectively.
expansion procesd 00 out of the total 200 beads are showwe  These features are qualitatively similar to those in the buck-

show conformations at 3.9¢, 39.4r,, 394r,, and 3946,, succes- ling dynamics due to compression along a rod with fixed
sively. ends, as analyzed in R¢B]. The very long time behavior is

the relaxation of a bend with a length scale the size of the
similar results to those with random perturbatiost. t=0,  entire chain; relaxation of this long wavelength bend should
the equilibrium interbead separation is suddenly changetie exponential and will be governed by the longest relax-
from |, to 1.9, and the subsequent evolution of the struc-ation time associated with the bending motion. We note that
ture of the chain is followed by numerically integrating Eq. full relaxation cannot be reached in the case of chains with
(7). fixed ends, and the simulation time in RE3] was not long
We analyze the dynamics of the expanding chain usingnough to reach this terminal regime.
several metrics. The compression and bending energies are To analyze the shape evolution of the expanding chain,
calculated from the bead coordinates using Efsand(6).  we introduce the radius-of-gyration tensorcalculated from
The shape of the chain is characterized by the radius-ofthe bead coordinateR,, and the center-of-mass coordinate
gyration tensofT [10]. The transverse buckling wavelength R°(t)==N*1R,(t)/(N+1):
is measured by using the slope-slope correlation function
Ks4(r,t) [3]. And finally, the correlation length of the hand- . R
edness of the transverse fluctuation is measured by introduc- 1i(V= §77 nz'l [Rin(1) ~RI(OIIR;n(D—Rj(1)],
ing the torsion-torsion correlation functidf,(r,t). )
Atypical set of snapshots of the expanding chain is shown
in Fig. 1. It is clearly seen that an initially straight chain wherei andj denote cartesian componentsy, andz, andn
develops buckling waves and that these waves grow througtienotes the discrete backbone coordinate. The square roots
a coarsening process. The organization of the buckling wavesf the three eigenvalues of the tensbr(R,, R,, andRj)
into helices can also be observed. give a measure of the size of the chain along the major axis
Upon the development of buckling waves, the compresx; and the two minor axe%, andxs, which are the eigen-
sion energy due to the altered equilibrium interbead spacingectors ofT. Figure 3 shows the evolution of the three prin-
is partially converted into bending energy. This repartitioningcipal radii of gyration with time. Since the major radiRs
of energy continues throughout the entire coarsening processtarts from a large nonzero initial value, we present data for
In Fig. 2, we show the evolution of the two energy contribu-R;(t) —R;(0). This difference is seen to increase linearly at

N+1
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(a) t/‘l:0 '(/1',0
10’ . . . FIG. 4. The time evolution of the average wavelength of the
buckled perturbationn (V) and the average persistence length of
the buckle handedneas; (A).
10" Ked 1) =(Vi, (D) V(D) (10)
- where the angular brackets refer to a statistical averaging of
n:"’w_‘_ | many runs with different realizations of the initial random
é: seeding. For a perfect sinusoidal wave, the funcKqy(r,t)
= changes sign twice during one full periodrinthe first zero
occurring at one-quarter of the wavelengthWe therefore
1072k define the characteristic wavelength as four times the value
of r whereKg(r,t) first becomes zero.
In order to measure the persistence of the handedness of
. the transverse fluctuation,, we introduce the torsion-
1010_2 1‘00 162 1(‘)4 o torsion correlation functioK ... For a space curve, torsian
b Ve is defined to measure the instantaneous amount that the curve
() 0 is distorted out of a planar path. Mathematicdliy],
FIG. 3. (a) Expansion dynamics of the major axtsR;=R; db
—R,(t=0). The dashed-dotted curve corresponds to the analytical r=—n-—, (12)
solution[Eq. (16)] for the expansion of a rod in one dimensidh) ds
Time evolution of the minor axeR, (A) andR; (V) during the _ _ o
expansion process. wheren is the unit normal, which is a measure of the nor-

malized rate of change of the tangent vedtaiith respect to

first and then turn into a slower square-root power increaséhe arc lengths and b is the unit binormal, defined as the
around the time the buckling waves develop. The two minoicross product of the tangent vector with the unit normal. The
radii start at a small value and then rapidly increase when theign of the torsion determines the handedness of the distor-
buckling waves begin to develop. Afterwards, they follow ation: a right handed distortion generates a positive torsion; a
"4 power law growth until eventually dropping back to zero left handed distortion generates a negative torsion. The
when the chain is fully relaxed. The small differencesRin  torsion-torsion correlation function is defined as
and R; are due to statistical errors, as these two axes are
equivalent. K1) = (7 (D) (1)) (12)

Following Ref.[3], we define the slope-slope correlation _ _ . ) )
function K, to calculate the characteristic wavelengtrof This function switches sign at half the correlation length of

the buckling waves. The transverse sloffgis the projection the helical orientation, . , ,
of the relative bead positiol,=R,.;— R, onto the tran- In Fig. 4, we show the_ time evolu_’uon of the buckling
verse axes, andx, wavelengthA and the helical correlation lengthy. The

initial random seeding does not favor any particular wave-

Vl(t)=[X2(t)-Vn(t)]X2+[X3(t)-Vn(t)]Xg, 9) length. However, .after.some initial i'ncubation period, the
transverse fluctuation picks up a dominant wave number cor-
and the slope-slope correlation function is defined as responding to a plateau k(t). Subsequently, the coarsening
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FIG. 5. Time evolution of the center-of-mass displacemen'[R 'zg‘) 6_.I_Early_ stalg::'_ time ev(;)lution ?f thgvrgig(e)rda)irieéﬁct(ioAn) \?vri]t(rj] he
ARIBD2Z (TR —R(t=0)13Y3 during the expansion pro. Re (V). This simulation seeds one tran
(AR5 ={[Re = Re(t=0)1)™) g P P unstable wavelength, of amplitude 0.1, and the other transverse

cess. ! -
direction with random perturbation of amplitude 0.Q1

of the buckles leads to an increase in the average wavewo radii become roughly equal. The structure at this point

length, manifested as & power law for a broad range of becomes clearly helical, as confirmed by direct visualization

the intermediate times. The growing wavelike buckles inof the chain configuration. The helical conformation mini-

three dimensions organize into helical domains, which arenizes the bending energy by distributing a constant curva-

separated by domain boundaries that may be viewed as inture over the length of the elastic chain.

perfections within the helical structure. The energy associ-

ated with the boundary imperfections is relaxed by diffusion V. LINEAR STABILITY ANALYSIS AND DYNAMIC

of the imperfections from the system, thus the helical corre- SCALING

lation length increases until the structure is a pure helix. . . _ . :
The development of helices generates a drift motion in the !N this section, we perform a linear stability and scaling

center-of-mass displacement of the expanding structure. THY'ysis with the goal of obtaining a physical understanding

rate of self-propulsion depends on the structure of the erf the results presented in the previous section. We first ana-

panding body, the rate of relaxation, and the net amount oyze Fhe early stage dynamics tha_t fo_cuses_ on Fhe initial ex-
helicity in the chain. Figure 5 shows the displacement of théaans:on of thefcr;]mnblnktlhe Iongltud\llr\}al g|rectlon and th?
center of mass during the expansion process. The dynami@?ve opment of the buckling wave. We then use a simple
of the motion is clearly rather complex. In particular, accel-EN€rdy argument to understand the driving force for the for-

erated motion takes place during the rapid development dpa.tion of helices. Finally, We use scaling analysis to ratio-
the buckling waves. The late stage motion appears to b alize the observed intermediate and long time scaling be-

linear and is probably due to the self-propulsion generate§@vior of the various quantities. .
during the relaxation of the one single helix. At the early stage of the expansion, the chain is essen-

In order to clearly show the formation of a helical buckled tially straight with small transverse perturbations. It is there-

conformation, we have performed simulations where the inifore convenient to decompose the chain configuration into

tial condition is seeded with a preferential perturbation alon ongitu'dinal and transve.rs.e_ comlponepts, with the ang|tud|-
one of the two transverse directions. Specifically, we set thg2! axis parallel to the initial orientation of the chain. We
y component of the initial transverse perturbation to a sinudefine a Iongltudln.al deformatpru(s) t.h.rough rL:[S_
soidal wave with an amplitude of Qgland with a wave- +U(S,t)]x, wherer is the longitudinal position of the chain
length o, the fastest growing wavelength determined frombackbone at internal coordinage Note here that the longi-
the linear stability analysiésee next sectionThez compo-  tudinal deformation is defined with respect to the initial equi-
nent of the initial perturbation is set to a random fluctuationlibrium position of the chain. The transverse deformation
with an amplitude of 0.0%. The time evolution of the two Rr(S) atsis simply the deviation from the initial chain axis.
minor axes is shown in Fig. 6. The separation of the twolhe equations of motion for these components are obtained
minor axesR, and R; at the beginning of the expansion in @ manner similar to Ec[.?). taking special care to maintain
process reflects the favoring of tiyecomponent. The two the dimensions in the continuous model. They are

magnitudes increase parallel to each other URfilhas ex-

panded to a threshold value, at which poRy levels off. M__ %2l 10 ii(l d(s+u)

The smaller minor axigk; catches up to the larger minor at Js 09s |y ds y2ds\ly s ’
axis R,. Thereafter, they continue to increase; however, the (13
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R 9| 9R: ,o[1a[1 a(1aR; to a wavelength\, of 27TI0[KeO/(_26)]*1’2. The most un-
T T Kog ea— —€l02215 25| 2 75| v a8 stable mode predicted from the linear stability analysis does
S\ oS SV ISy dS\y S not favor they or z directions, nor does it favor the cosine or

(14) sine contributions. This suggests that the transverse pertur-
bations in the two unexplored dimensions initially are inde-
The early stage dynamics is dominated by the compresPendent of each other. However, statistically, the amplitude
sion energy. Since the initial conformation is essentiallyof the most unstable mode is equivalent in these two dimen-
straight, the beads move in the longitudinal direction as ifsions.
they are confined to move in one dimension. Ignoring the The linear stability analysis predicts an exponential
transverse components leads to the following simplifiedgrowth of the most unstable mode at a rate of'

equation of motion for the longitudinal deformation = K2e§/(4I§§e), thus the transverse displacement becomes
significant whent~ ;. This time therefore signals the ter-

au d%u mination of the one-dimensional growth dominated by the

ga_t: "E- (15 compression energy. This is shown clearly as the end of the

plateau in the compression energy in Fig. 2, and the devia-
It is convenient to define the internal coordinage tion from linear growth in the radius of gyration of the major
e[ —Lo/2,Ly/2]. This equation is supplemented by the final axis (Fig. 3). This time also correlates well with the onset of
valueu(s,) = (yo— 1)s=e,s and the zero strain boundary Scaling behavior in other properties. _
conditions at the two chain ends. The solution can be readily "€ expanding transverse buckles force the bending en-

obtained as an eigenfunction expansion that reads ergy to overcome the compression energy at tirtesy .
The growing wavelike structure locally conforms to a path

s between a planar wave and a helix. The three-dimensional
—} buckled structure relaxes by following the steepest descent
Lo on the potential energy surface. We now show that the bend-
ing energy favors organization of the buckles into helices. To
this end, we focus on the bending energy contribution in a
Xex;{ Am?k _ (16) segment of the chain spanning a single period of wavelength
No. Since the longitudinal expansion requires an orches-
trated motion of the entire chain, the transverse buckles grow
Equation(16) defines a set of relaxation times for the eigen-outward without appreciably spreading longitudinally. Thus,
modes. In particular, a “Rouse-like” time associated with thefor the present purpose we keep the longitudinal distance of
slowest longitudinal relaxation mode can be identified aghis chain segment fixed, so that chain expansion occurs only
T|ong=§L(2)/(772K)- through the growth of the buckling wave in the transverse
Using Eq.(16), we obtain the evolution in the radius of directions. We represent the distortion of the chain by as-
gyration for a chain expanding in one dimension. For shoruming
times, the change in the radius of gyration is given by

(—P
1
2

1
277( p+ =

= Sin 5

2t

Pt

e}

r=X(s)x+Ar, sin(koS)y+Ar,cogkes)z,  (18)

1 (Lo2 L
Ry—Ry(t=0)= \/L—f ° (s+u)2ds— — subject to a given swelling rati@r/ds|= vy, with y varying

0/-Lo2 2\3 between 1 and 1.5 corresponding to the initial and final

2\/§Ke length of the chain, respectively. Note that either the sine or

A~ t cosine part in the above equation corresponds to a two-
£Lo dimensional wave, whereas when both sine and cosine are

23 t present with equal coefficient_s, we obtain a perfect_ helix.

=Loep— ) (17)  Therefore, we plot the bending energy as a function of

m? Tiong [Ary,—Ar,]/\o; the result is shown in Fig. 7. It is clear that

the helical structure is an energy minimum at all valuey of

This predicted linear behavior is in perfect agreement withrepresenting a time progression in the expansigflecting
the simulation result shown in Fig. 3. the tendency of the wavelike structure to assume a confor-

The one-dimensional configuration of a chain with inter-mation of constant curvature. The energy difference between
nal compressional strain is unstable with respect to smakhe helix and a two-dimensional deformation increases with
transverse perturbation. The initial instability can be Underincreasing swelling ratio and approaches zero as the swelling
stood through a simple linear stability analysis. Representingatio approaches one, the latter being consistent with the lack
the transverse perturbation as a sinusoidal wave with wavgf a transverse directional preference of the buckling pre-
numberk, Ry~ A, exp(ks), and substituting it into the equa- dicted by the linear stability analysis. Thus the formation of
tion of motion, Eq.(14), we find that the amplitude of the helices is a nonlinear effect.
perturbation A, will grow for k's in the range |K| As the wavelike deformations grow in the transverse di-
<ef4«xl€)Yl,. The most unstabléi.e., fastest growing rection, the driving force for coalescing into a helical con-
mode is that withko= *el?(«/ €)% (\/2l,), corresponding formation increases. The handedness of a helix is dictated by
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TORT _ eRT)\(z) _ RT)\é

t e\ At

(20

It can be readily seen that the buckling wavelength scales
as A~ \o(t/7) Y4 The internal strain is seen to scale @s
~ey(t/79) ~Y2. Substituting the internal strain into the com-
pression energy yieldd o~ k(Lo /lg) e%(t/ro)‘l.

To understand the scaling behavior of the increase in the
length along the major axis of the rod, we analyze the gov-
erning equation for the longitudinal motigiq. (13)]. This
analysis requires careful consideration of the appropriate
length scales. The contribution of the compression energy is
relatively unaffected by the presence of transverse buckles;

therefore, the proper backbone length scale for the compres-
§25 02 015 01 005 0 005 01 015 02 sion energy id o, leading to
A ry—A rz)/ 7‘0

: : . L §——~Kki—. (21
FIG. 7. Bending energy for a single period wavelike distortion. t Lo

The amplitudesr, andAr, correspond to the relative contribution . . . . )
of the sine component and the cosine component respectively. USing the scaling for the internal strai we obtain the
scaling for the longitudinal displacementas

the sign of the local torsiom. The random initial perturba- entl2 12 122
: ol™ 7o t 0
tion does not favor one over the other. However, because of AR~k ~( d) —, (22
the continuity of the space curve, correlation develops as the ¢bo Toen Lo

chain expands S0 that Fhe local torsion persists over a IengWhere the last expression results from using the expressions
Ay - The result is a helical structure with helical domains Offor 70 and ro..— £l 2/¢. This accounts for the observed?
0 bend— s'of €-

length\,, which are separated by kink domain boundaries. . . . . A

The dynamics for the intermediate timgs>t> 7, where pov_l\_/ﬁr law ;ﬂcrebasr? n th? lr;ajohr ams_shg_wngln F'g'b?"
7¢ IS @ terminal relaxation time scale to be obtained later, is derstc?ozcimgoir? al\)/;%rk ct)o Tthse oev;/(n rI:ssilgﬁ fo(;atrrlle ?nl;gr_nal
characterized by power law dependence in a number of prop-,_ Yy going EXP
erties. To understand the observed scaling behavior, we peSrEram. that consists of both longitudinal and transverse con-
form a scaling analysis, following similar arguments given intr|but|ons
Refs.[3,12] in the study of compressed rods and membranes.

We choose a transverse displacement sBalgignoring e=ep— — — =
for the present purpose the difference betw&nand Rs. an 2
The longitudinal deformation is characterized by the increase
of the length along the major axi8R;, which scales simi- For t>7q the strain becomes negligible compared to each
larly to the displacement introduced at the beginning of individual term on the right hand side of the equation. Thus,
this section. The length scale for the bending deformation igve can obtain the scaling behavior fgf by balancing the
the wavelength of the bucklésand that for the longitudinal three terms on the right. Assuming for the moment that we
displacement it . The fact that the contour length increasescan ignore theAR, /L, term, we have
will be accounted for by the leading dependence in longitu-
dinal strain, but otherwise has little effect.

We start with the scaling behavior for the buckling wave-
length \. The driving force for buckling is due to both the
compression energy and the bending energy. Assuming thathich is in agreement with the power law behavior in Fig. 3.
the two driving forces contribute roughly equally, we have,Combining the scaling forRy and A, we obtain the
from the transverse equation of motipiqg. (14)], scaling for the bending energyUpenq~ eloloRH/\*

~ kej(Lo/lo)(t/m0) 2 The power law behavior Ry [Eq.
(24)] terminates when the second term in E2B) AR; /L is

§—~K—~EI§—T. (19 no longer negligible, and this happens when

~ep————. (23

t 1/4
Rr~ef A ~el T—) : (24)
0

ARl"" eoLO (25)

The above relation can be rewritten using the initial strainor
e=7vo—1, and the wavelengthy and time scaler
=412¢€l[ k%€3] identified from the linear stability analysis,
as

2 Lo ¢
t~ 7t~ Thend€o E (26)
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ation time can also be obtained as the time required for th&istent with our description of domain relaxation; however,

during the free expansion process. Also, the helices studied

TE T benm(lf—;

structures that arise spontaneously during the relaxation pro-
is nothing but the transverse relaxation time for a semiflexresult of a rather complex relaxation mechanism that remains
play an explicit role in our study. This is because bucklingtuation in our study. To this end, we compare the thermal

To 4el} thermal fluctuation is expected to affect the system behavior
The time scaler,,, becomes obliterated once buckling For our choice of parameters and assuming room tempera-
problem exhibits similar transverse buckling to that in athermal energy until well past the terminal relaxation time
laxation than that associated with transverse buckling. If thelecay in the compression energy will reach a plateau value
buckling waves will not be able to grow to any significant ties studied in this work is determined by the bending en-
made of isotropic material, this will be the case if the initial cluded Brownian forces, that even th&? growth in the
explicit dependence of the bending and compression modutiompression energy reaches a plateau.
we have presented in this study will prevail. flexible polymer. Stress relaxation in semiflexible polymers
length\ grows by two modes of relaxation. It grows inter- sion upon pulling a semiflexible polymer by one end is
axis of orientation. This process increases the wavelengtthermal fluctuation in our work would undoubtedly be more
helices around the axis of orientation. This process increase® situations where relaxation is driven by large mechanical
length because the helical domains grow only by diffusion of
V. CONCLUSIONS

the relaxation of tw@reexistingcompeting helical structures The free expansion of an elastic filament progresses along
perfection front propagation are identified: “crankshafting,” tribute the energy between compression and bending. The

7+ thus defines the terminal relaxation time when the rod ha§on,” where each helix revolves around their own atiis-
approached its final equilibrium length. This terminal relax-ternal relaxation These modes of front propagation are con-
wavelength of the buckles to reach the full length of the rod.our problem is complicated by the existence of many do-
Setting\ ~L,, we have mains of helicity, and these two modes occur simultaneously
2 in Ref.[16] correspond to energy minima in a bistable sys-

' (27 tem, while the helices appearing in our study are transient
which apart from some numerical factor is identical to thecess in a system lacking an obvious propensity for helical
scaling expression E¢26). We note that this relaxation time formation. The apparent’® growth in\, observed here is a
ible polymer[13,14. Interestingly, the relaxation time asso- to be investigated further.
ciated with the longitudinal relaxatiofEq. (16)] does not Finally, we discuss the effects of neglecting thermal fluc-
appears long before this relaxation time is reached since energy with the compression and bending energies. Since the

compression energy decays faster than the bending energy,
=k @8 \when U g,~NksT. Since Ucom™ kN€5(t/79) 7%, the two
energies become comparable when TT~(K/kBT)e§ro.
waves dominate the relaxation dynamics. This inequality irture, x/kgT~6N?; thus we estimate that;~10%7,. On the
fact specifies the condition under which the free expansiowther hand, the bending energy remains much larger than the
compressed rod with fixed ends. This condition reflects ther; . Thus thet 2 decay in the bending energy shown in Fig.
significantly larger resistance associated with longitudinal re2 will be unaffected by the thermal fluctuation, while the
parameters are altered such thgt,,~ 7o, then even though corresponding to the thermal energy of the rodt-atry.
the transverse buckling instability may still exi¢ts5], the ~ However, since the scaling behavior of most of the proper-
extent since the driving force for buckling will have been ergy, thermal fluctuation has little effect on these properties.
dissipated through longitudinal relaxation. For an elastic rodnterestingly, we find from separate calculations that in-
strain is less or comparable to the inverse of the aspect ratiength of the major axi$which is expected to be affected by
of the rod.(This result can be obtained by substituting thethe compression energpersists well past the time when the
on the diameter of the rod and on the Young’s modulus of We note that there are many situations in which thermal
the material9. For long rods with large strain, the scenario fluctuation plays an essential role in the dynamics of a semi-
The increase of the helical persistence lengthis nec- is an example that has attracted considerable attention in re-
essarily slower than that of the wavelength The wave- cent yeard13,14,17,18 Similarly, the propagation of ten-
nally at the helical domain boundaries; two helices meet anghown to depend crucially on the thermal fluctuation spec-
eliminate one another by turning the imperfection around thérum in the initial configuratiod19]. While the inclusion of
without effecting the length of the two helical domains. Therealistic and would lead to slight modifications in the behav-
wavelength also grows at the chain ends by turning the enir of some properties, we have chosen to focus our attention
both the wavelength and the helical domain length. The heenergies and hence the omission of thermal fluctuation is
lical persistence length grows at a slower rate than the wavagustified.
writhe out of the ends, and the wavelength grows by both
internal relaxation and unwinding at the ends. The physics of
has recently been analyzed for a chain of fixed length anthe energetic path of least resistance, notably marked by the
bending/twisting degrees of freedd6]. Two types of im-  emergence of the transverse buckling, which occurs to dis-
where one helix spins around the axis of the other at thevavelike buckles grow as a coarsening process until the
chain end(end dissipatioyy and “speedometer-cable mo- wavelength reaches the full length of the chain, at which
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point the chain relaxes back to its equilibrium straight con-nize into helical domains of common handedness. The
formation. The buckles expand in the transverse directiofiormer symmetry breaking occurs to preferentially distribute
and prefer to assume a helical orientation due to a nonlinedhe energy between bending and compression, rather than
effect, which is not predicted by linear stability analysis. Al- dissipating the energy through compression alone. Energy
though the energetically preferred conformation as the trangedistribution during the relaxation process is common in
verse displacement grows is a pure helsingle handed- Problems of stress dissipation. Similar to expanding rods, the
ness, the local handedness is determined by the locafXPansion of compressed membranes exhibits transverse

torsion: therefore, the wavelike buckles coalesce into helicapuckling in order to alleviate the compression enefg].

domains separated by kink imperfections, which are elimi=>imilarly, when an elastic cube is stressed through inward

nated from the expanding body by diffusion from the Chainpointing forces at the cube vertices, the cube buckles along

ends. The helical domains grow until the relaxing com‘orma-the.3 cube e_dge[é_23].“An |n|t|aI_Iy thste_d _rod”may unwmql th?
ist density via ‘“‘geometric untwisting,” where twist is

tion achieves a pure helical orientation, where the handeotyv

ness is determined by the orientation of statistical domjonverted to writhe, and stress is dissipated through drift

nance. motion of the chain backbon@0]. This process, in which

The relaxing helix undergoes self-propulsion, which is€nergy is redistributed between twist and bending, is obvi-

similar in nature to the propulsive motion of flagellated ously analogous to the free expansion problem we study

micro-organisms, as it strives to achieve the minimum enl€'€: This mode of relaxation, however, is the dominant

ergy, straight conformation. The existence of domains o]mechamsm only whe_n the moment_about the twisted chain
handedness in the expanding structure extends the compaﬂ?ne.rated by.the torsional deformz_;ltlon cannot overcome the
son between our problem and micro-organism propulsionrotatlonal resistence. Thus there is a further similarity be-
since some bacterial flagella employ competition betwee'];\{veen the relaxation of twist deformation and the free expan-

structures of opposite chirality to drive motigh6]. The dy- sion of elastic fllgment_s_, as in both systems redlstr!butlon (.)f
namics of the drift motion of the entire chain is rather com-En€rgy through instability occurs only under certain condi-

plicated due to the structural complexity of the relaxingt'ons'

body; therefore, a scaling analysis of the center-of-mass mo- A recent theoretical analysis of DNA condensat|GH]

tion from the dynamic equations of motion would not proVe'suggests that the chain collapse occurs via an Euler buckling

effective. Furthermore, in the case of flagellated micro_mstability, thus partitioning the total energy into bending and

organisms, an important contributing factor toward the rateeleCtrOStatIC energy. Our analysis of the freely expanding rod

of self-propulsion is the effect of chain twisting on the hy- provides insight into the existence of higher order structure
drodynamic behavior of the elastic rdd]. We have ana- within the buckle phase; therefore, if the chain collapse oc-
lyzed the structure of the freely expanding rod and predicte&urs through a similar instability, it is likely that the condens-

that self-propulsion is an interesting consequence of thd'd DNA strand also contains helical domains. We are inter-

higher order structure that is established during the reIangteoI in analyzing the effect of helicity on the chain collapse

ation process. However, to quantify the center-of-mass disc_iynamics and determining its role in the morphology of the
placement, the additional twist degree of freedom should bgondensed DNA strand.
included in the'elastlc rod' modgR0—-27. _ . ACKNOWLEDGMENTS
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